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SUMMARY

Laboratory experiments were performed to determine the influence of freezing on the

spherical wave generated by a spherical explosive charge in rock. The work is relevant to the

Soviet nuclear test site in Novaya Zemlya where permafrost conditions exist. The results are also

valuable for developing and validating material modeling in continuum mechanics codes used for

source coupling calculations.

In the experiments, the rock specimens consisted of cylinders 27 cm in diameter and 27 cm

high of well characterized Indiana limestone and Sierra White granite. The wave source was a

1 -cm-diameter sphere containing 3/8 gram of PETN powder packed to a density of 1.0 gram/cm 3

(detonation pressure of 8.2 GPa). Particle velocity histories were measured at nine ranges using

concentric copper loops placed in machined grooves along the midplane of the rock specimen. A

constant axial magnetic field was applied to the specimen, and the particle velocity was measured

by monitoring the induced voltage generated by each loop as it moved through the magnetic field.

The velocity is the product of the induced voltage, the loop length, and the magnetic field strength

according to Faraday's law.

The Indiana limestone, which had a porosity of 16%, was frozen (-8'C) under dry and

saturated conditions. The Sierra White granite, which had a porosity of 0.8%, was frozen in a

saturated condition. Wave results from our past experiments on those rocks at room temperature
were used to assess the influence of freezing on the wave forns.

The experimental results showed that freezing affected the wave only in the Indiana

limestone in a saturated condition. The main effects on the wave characteristics caused by freezing

of the saturated Indiana limestone are as follows:

(1) The wave speed increased from 4.7 mm/s to 5.6 mm/is.

(2) The peak particle velocity decreased by about 10%, the outward and inward
velocity phases shortened by about 30%, and a precursor wave appeared at
the short ranges.

(3) The maximum and final radial displacements were reduced by about 30%.

(4) The reduced velocity potential maintained its maximum value, but the phase
was reduced bv ahout 30%
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(5) The reduced displacement potential decreased by about 50%.

(6) The low frequency content of the velocity spectrum decreased by about a
factor of 2. The comer frequency increased (30 to 50 kHz), but the decay of
the high frequency content showed little change. Similar changes occurred
for the spectra of the displacements and potentials.

(7) The radiated kinetic energy remained the same. 'U

We recommend that similar experiments be performed in limestone of lower porosity to

determine the trend of the influence and possibly to be more representative of the rock at Novaya

Zemlya.
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SECTION 1

INTRODUCTION

Laboratory experiments were performed to determine the influence of freezing on the

spherical wave generated by a small spherical explosive charge in rock. The work is relevant to the

Soviet nuclear test site in Novaya Zemlya where permafrost conditions exist. The results are also

valuable for developing and validating material modeling in continuum mechanics codes used for

source coupling calculations.

Five experiments were performed with cores of well characterized Indiana limestone: two
.,nder frozen/dry conditions and three under frozen/saturated conditions. Three experiments were

performed with cores of well characterized Sierra White granite under frozen/saturated conditions.

Measurements of the spherical wave propagating from the spherical charge consisted of particle

velocities at nine ranges. Rock properties and a description of the experimental technique are

contained in Section 2. Wave results from our past experiments with identical Indiana limestone

and Sierra White granite performed at room temperature were used to assess the influence of

freezing on the wave forms. The frozen rock results are presented in Section 3 and comparisons

with the corresponding room temperature results are made in Section 4. One test of each type was

selected to describe the results and make the comparisons. The results of the repeat tests are given

in Appendix A. Definitions and formulas used to process the data are given in Appendix B.

The main general conclusions are that freezing dry Indiana limestone and freezing dry and

saturated Sierra White granite (porosity 0.8%) had almost no effect on the spherical waves.

However, freezing of saturated Indiana limestone (porosity 16%) had a substantial effect on the

spherical waves. The specific effects are listed in Section 5.
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SECTION 2

DESCRIPTION OF EXPERIMENTS

2.1 TECHNIQUE AND CONFIGURATION

Figure 1 shows the main features of the technique and configuration of the rock

experiments. A core of rock nominally 27 cm in diameter and height is cut into two equal

cylinders, and the cut faces that will be brought together later are ground and smoothed flat.

Hemispherical cavities are milled at the center of each of these faces for the spherical charge, which

has a diameter of 1 cm. In the lower smooth face, nine concentric circular grooves, 0.254 mm

wide and 0.381 mm deep, are milled with the radii shown in Figure l(b). Annealed insulated

copper wire of 0.229 mm diameter is epoxied into each circular groove and brought outside the

rock specimen by a radial groove to form an electric circuit. The copper wire circles are the particle
velocity gages. The charge is detonated by 2 grain/foot mild detonating fuse (MDF) contained in a

stainless steel tube located in a hole drilled on axis in the upper rock cylinder. Gas dynamic

calculations show that negligible venting of the cavity gases occurs during the velocity

measurement period of the experiment. The spherical charge consists of 3/8 gram PETN powder

packed to a density of 1 gram/cm 3. The Chapman-Jouguet pressure is about 8 GPa. The

explosive is contained in a spherical shell of Lucite with an outside diameter of 1 cm and a wall

thickness of 0.5 mm. Before the testing, the two halves of the rock specimen are brought firmly

together and cemented around the perimeter.

The assembled cylindrical specimen is lowered into a solenoid with a nominal diameter and

height of 30 cm situated inside a pressure vessel. When overburden is required, the vessel is filled

with fluid and pressurized. When dry rock is subjected to an overburden pressure, the specimen is

given a thick coat of impermeable urethane.

The sequence of operations consists of applying the overburden pressure, turning on the

solenoid current to create an axial magnetic field in the rock specimen, and detonating the charge.

The wire loops expand at the particle velocity of the spherical wave generated by the charge. This

velocity is obtained by Faraday's law; the voltage measured for a loop is equal to the product of the

magnetic field strength, the loop length, and the wire velocity.
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Figure 1 Configuration of particle velocity experiments in
Indiana limestone and Sierra White granite.
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To provide a frozen saturated state, we first subjected each half specimen to a vacuum on

one flat face and deionized water on the other faces pressurized to 6.9 MPa. This process was

performed in an apparatus specially designed for this purpose. The deionized water was

compressed by a flatjack to prevent air from becoming entrained in the water. The saturation

process was in place for 24 hours. Once fully saturated, the half specimens were placed in a

freezer and kept at -20'C for at least 24 hours. The freezing process was designed to start at the

lower flat surface and end at the upper flat surface by having an arrangement of insulation around

the cylindrical side and on the flat top surface. This process prevents freezing from occurring first,

in the outside layers and progressing inward to cause a large buildup of pore pressure as the water

expands as it freezes. This pressure either inhibits internal freezing or cracks the specimen.

Freezing from the bottom forces water out the top. Weighings indicated that the water removed

was 10% of the pore volume as it should be if the pores become full of ice under low pressure.

After freezing, the two halves are cemented together and placed in the solenoid within the

pressure vessel. The fluid in the vessel is a coolant kept at a low temperature by pumping in liquid

nitrogen. A thermocouple located 2 cm inside the rock next to the midplane is used to record the

rock temperature immediately before charge detonation.

2.2 ROCK PROPERTIES

Table 1 lists properties of the Indiana limestone used in our experiments. Our material

properties tests were augmented considerably by the work in References 1 through 4 on the same

and similar limestone, all from the same general area of the quarry.*

Table 2 lists properties of the Sierra White granite* extracted from the results in Reference

5. Our own measurements on density, porosity, and wave velocities agreed with those listed in

Table 2.

2.3 EXPERIMENTS PERFORMED

Table 3 lists the eight experiments performed on the frozen rock, five with Indiana

limestone and three with Sierra White granite. For each pore condition, attempts were made to

provide two or three identical tests to exhibit the degree of reproducibility (see Appendix A).

*Elliott Stone Co., Inc., 3326 Mitchell Road, P ). Box 756, Bedford, Indiana 47421.

Raymond Granite Co., Raymond, California.
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Table 1

PROPERTIES OF INDIANA LIMESTONE 1" 4

Density As receiveda 2.277 grams/cm 3

Dryb 2.269 grams/cm 3

Saturated c  2.425 grams/cm 3

Graind 2.699 grams/cm 3

Porosity Total c  15.90%
Interconnected c  15.54%
Occludedc 0.36%

Crush strength As receivede 45.8 MPa
Dried f  53.3 MPa

P-wave speed Dryg 4.21 mm/ms
Saturatedg 4.35 mm/ms

S-wave speed Dryg 2.14 mVms
Saturated 2.09 mrn/ms

Static elastic constants Bulk modulus, Ks 15 GPa
Young's modulus, Es 22.5 GPa
Shear modulus, Gs 9 GPa
Poisson's ratio, xs 0.25

Dynamic elastic constantsh

Dry Bulk modulus, K 26.5 GPa
Young's modulus, E 27.8 GPa
Shear modulus, G 10.4 GPa
Poisson's ratio, 1 0.33

Saturated Bulk modulus, K 31.8 GPa
Young's modulus, E 28.6 GPa
Shear modulus, G 10.6 GPa
Poisson's ratio, 1 0.35

Static failure envelope

Dry ar(s) - 9(s) = 4.17 [am(S)] 0 -75 MPa

Saturated ar(s) - (7 (s ) = 100 MPa

Crush curve References 1-3

Average properties from following numbers of tests

a. 20, b8, c. 5, d. 5, e. 8, f. 3, g. 10

h. From densities and P- and S-wave measurements
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Table 2

PROPERTIES OF SIERRA WHITE GRANITE 5

Density Dry 2.638 grams/cm3

Saturated 2.646 grams/cm3

Grain 2.660 grams/cm3

Porosity Total 0.82%
Interconnected 0.80%
Occluded 0.02%

Axial stress under uniaxial strain 5 40 125 MPa

P-wave velocity 5.486 5.934 6.081 mrn/is

S-wave velocity 3.076 3.398 3.540 mr/.s

Bulk modulus Static 18.0 44.1 55.9 GPa
Dynamic 46.3 52.5 53.7 GPa

Young's modulus Static 35 8 72.4 79.7 GPa
Dynamic 63.6 76 8 82.5 GPa

Shear modulus Static 15.3 29.5 31.5 GPa
Dynanc 25.0 30.6 33.1 GPa

Poisson's ratio Static 0.17 0.23 0.26
Dynamic 0.27 0.26 0.24
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Table 3

SPHERICAL WAVE EXPERIMENTS PERFORMED WITH
FROZEN ROCK

Temperature
Rock Type Pore Condition (°C) Test Number

Indiana limestone Dry -8 597

-8 59 8a

Saturated -8 600

-16 602 a

-4 605

Sierra White granite Saturated -8 590

-8 591a

-5 603

aExperiments selected to illustrate results in Section 3.
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The results for Test 590 were suspect in being well outside our experience with Sierra White

granite. Consequently, the results are not reported in Appendix A.

Table 4 lists six experiments selected from our past work6 7 with spherical waves in

Indiana limestone and Sierra White granite at room temperature so that we can compare the waves

with those generated in the frozen rocks. The comparisons are made in Section 4.
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Table 4

ROOM TEMPERATURE SPHERICAL WAVE RESULTS
USED FOR COMPARISONS 6 , 7

Rock Type Pore Condition Test Number

Indiana limestonea Dry 596, 599

Saturated 601. 604

Sierra White Graniteb Dry 564

Saturated 563

9



SECTION 3

EXPERIMENTAL RESULTS

In this section, we present results obtained in frozen rock experiments selected from the

complete set listed in Table 3. The frozen/dry and frozen/saturated conditions of Indiana limestone

are presented by Tests 598 and 602, and the frozen/saturated condition of Sierra White granite is

represented by Test 591. The results for the other experiments listed in Table 3 are shown in

Appendix A, where we also show the degree of reproducibility.

3.1 INDIANA LIMESTONE RESULTS

3. 1. 1 Particle Velocity

Figure 2 shows the nine particle velocity records obtained from Test 598 in which the

limestone was in a frozen/dry condition. Arrival times of the wave front at the particle velocity
gage ranges determine a constant velocity of 4.4 mm/is. A distinctive feature of the wave shape is

the initial rapid rise that corresponds to an elastic precursor. Preliminary elastic analysis indicates

that, at the shorter ranges IFigure 2(a)], the precursor wave magnitude is governed by the onset of

pore crushing. At the remaining larger ranges, the entire wave is elastic. Following the precursor,

the particle velocity increases at a slower rate to a peak value. After the peak is reached, the
velocity decays steadily to form an outwardly directed pulse of 9-ts duration. The wave then

exhibits an inwardly directed phase of substantial magnitude for an addition 16 ;.ts.

Figure 3 shows the nine particle velocity records obtained from Test 602 in which the

limestone was in a frozen/saturated condition. Arrival times at the gage ranges give a constant

wave velocity of 5.6 nm/its, which is much faster than the wave velocity in frozen/dry limestone

(4.4 rmis). An elastic precursor exists, but it is less pronounced than the precursor in frozen/dr)

limestone. The overall pulse shapes are similar to those in Figure 2, but the maximum velocities
are about twice the frozen/dry values, the duration of outward motion is shorter (7 pgs compared

with 9 pts) as is the rebound duration (13 4ts compared with 16 pts), and the magnitudes of the

rebound velocities are comparable.

10
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3.1.2 Displacement

Figure 4 shows the nine displacement histories obtained from Test 598 in which the

limestone was in a frozen/dry condition. The curves were obtained by temporal integration of the

particle velocity records in Figure 2. At each range, the displacement achieves a final value after

reaching its maximum value, which demonstrates that the explosive cavity has undergone

permanent enlargement.

Figure 5 shows the corresponding displacement histories for frozen/saturated conditions.

The maximum displacements are larger by a percentage depending on the range, as are the final

displacements.

3.1.3 Reduced Velocity Potential (RVP)

Figure 6 shows the RVPs obtained from Test 598 for frozen/dry limestone. The function

is fairly constant beyond a range of 20 mm (4 charge radii), so this range is an estimate for the

elastic radius.

Figure 7 shows the RVPs obtained from Test 602 for frozen/saturated liraestone. The

function is fairly constant beyond a range of 25 mm (5 charge radii), so this range is an estimate

for the elastic radius.

3.1.4 Reduced Displacement Potential (RDP)

Figures 8 and 9 show the RDPs obtained from Tests 598 and 602 for frozen/dry and

frozen/saturated limestone, respectively. In Figure 8, we see that the function is fairly constant

beyond a range of 20 mm. In Figure 9, the results for the outer three ranges are not accurate

enough to allow conclusions to be drawn. However, by smoothing the final displacements by

means of a least squares fit to E,- = W or 2 (r > 20 mm), we obtain W = 0.021 and 0.031 mm 3 x

10-3 for the final asymptotic values of the dry and saturated RDP, respectively.

3.1.5 Additional Results

Various spectral distributions, attenuation plots, wave velocities, and radiated kinetic

energies are provided in Section 4 where we compare the results for frozen/dry, frozen/saturated,

and room temperature dry and saturated limestone.
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3.2 SIERRA WHITE GRANITE RESULTS

As shown in Table 3, all experiments on granite were in the frozen/saturated condition.

Because the particle velocity records, as represented by the results in Figure 10 for Test 591, are

almost identical to past records from tests with dry and saturated Sierra White granite performed at

room temperature, it seems reasonable to assume that frozen/dry conditions would not give

different records.

The main features of the particle velocity records consist of a sharp rise to the peak velocity

(no precursor at the stress levels of these experiments) followed by a smooth decay to form an

outwardly directed velocity pulse of 6-1as duration and a rebound of comparable duration. The

corresponding displacements are shown in Figure 11. Permanent displacements occur, which

indicates that the explosive cavity was permanently enlarged. Figure 12 shows the RVP function

with a behavior consistent with the development of elastic wave propagation within a short distance

of the charge. Figure 13 shows the RDP function. Data smoothing or analytic fitting is required

for such short pulses (Figure 10) to overcome inaccuracies in the raw data and provide a generic

RDP.

Figure 14 shows the spectral distribution of the particle velocity measured at a range of 25

mm (5 charge radii). The amplitudes form a plateau at about 60 (rrVs)/MHz up to 50 kHz, above

which the spectral amplitudes decrease with frequency, f, as f-0.69 up to 1 MHz. Figure 15 shows

the corresponding spectral distribution for the displacement, with the lower frequencies having a

plateau at 110 irn/MHz to 50 kHz and a decrease as f-0.84 up to I MHz. If our experiments

represent a scaled yield of 8 kt TNT equivalent, the scale factor is 2550 and the comer frequency of

50 kHz becomes 20 Hz.

Figures 16 and 17 show the corresponding spectra for the RVP and RDP provided by the

particle velocity data at a range of 25 mm. The amplitude distributions are similar to those of the

particle velocity and displacement spectra shown in Figures 16 and 17. The amplitudes for the

higher frequencies (>50 kllz) decay as f1 5 3 and f-1 .()4 in the RVP and RI)P spectra, respectively.
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SECTION 4

COMPARISON OF EXPERIMENTAL RESULTS

We compare the results of the frozen rock experiments with those available from room

temperature experiments on rock having the same basic properties as listed in Tables 1 and 2 in

Section 2. Freezing of the rock made no significant difference to the wave profiles measured in

Sierra White granite nor to the wave profiles in dry Indiana limestone. Our comparisons are

consequently reduced to a comparison of the results of frozen/saturated Indiana limestone with

those from room temperature saturated conditions performed under Contract DNA 001l-90-C-0131

(Test 601, Reference 6). The results from frozen/dry conditions (same as room temperature

results) are included to show the effect of saturation.

The results presented consist of particle velocity, displacement, RVP, RDP, and spectra of

these quantities all at the same range (30 mm). In addition, we compare wave speeds, attenuation

plots of maximum velocities and displacements, and the radiated kinetic energy.

4.1 INDIANA LIMESTONE

4. 1. 1 Particle Velocity

Figure 18 shows the particle velocity records for the three conditions at a range of 30 mm

(6 charge radii), which is beyond the elastic radius in all cases. Freezing the saturated limestone

had the effect of increasing the wave speed, lowering the maximum velozity, and shortening the

outward and inward phases of the pulse when compared to dry and saturated/room temperature

conditions. During the initial velocity rise, a precursor wave is visible in Test 602 but not in the

repeat Tests 600 and 605 (see Figure A3 in Appendix A where we discuss reproducibility). The

change in pulse shape is consistent with the ice providing higher moduli and strength, and reducing

the fluidization around the explosive charge that occurs with water-filled pores. In other words,

the trend is toward an elastic behavior throughout the material; in fact, the pulse tends to resemble

the pulses generated in Sierra White granite.
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4.1.2 Displacement

Figure 19 shows the displacement histories obtained from the velocity pulses of Figure 18.

With time measured from time of arrival at the 30-mm range, the displacements lie between those

of the dry and saturated conditions. Because the pulse is shorter, the final displacement plateau is

reached sooner.

4.1.3 RVP and RDP

Figures 20 and 21 compare the RVP and RDP functions at a range of 30 mm, respectively.

The magnitude of the RVP is not affected by freezing the pore water, but the phase durations are

much shorter, as expected by the form of the particle velocity records in Figure 18. The RDP

functions bear a relationship to each other that is similar to the displacement histories in Figure 19.

4.1.4 Spectra

Figure 22 shows the spectra of the particle velocities measured at a range of 30 mam.

Freezing lowered the low frequency amplitudes by about a factor of 2 and raised the comer

frequency from 30 to 50 kHz. The higher frequency contents are similar, with amplitudes

decaying as f-2.

Figure 23 shows the corresponding spectra of the diplacements ( - , Freezing

lowered the low frequency amplitudes by about a factor of 2 and raised the comer frequency from

30 to 50 kHz, as in the particle velocity spectra. Freezing lowered the high frequency content

'!eneraliy, but the decay of both is almost inversely proportional to the frequency (f0).

Figure 24 for the RVP spectra is similar to Figure 22 for the particle velocity spectra so the

observation made about Figure 22 apply.

Figure 25 for the RDP spectra is similar to Figure 23 for the displacement spectra so again

the observations made about Figure 23 apply.

4.1.5 Other Comparisons

Figure 26 shows plots of the times of arrival at the various gage ranges. The plots are

linear and the inverse slopes give the wave velocities. Freezing saturated limestone increases the
wave speed considerably from 4.7 mm/ ts to 5.6 mm/ps, which is about the same as the wave

speed in Sierra White granite.
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Figure 22. Comparison of velocity spectra at the 30-mm range in Indiana limestone
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Figure 27 shows the attenuation of the maximum particle velocity with range. Freezing
saturated limestone results in lower velocities but similar attenuation curves. Beyond about 20

mm, the attenuation for all cases is in accordance with spherical elastic wave propagation. The
maximum values plotted in Figure 27 are listed in Table 5.

Figure 28 shows the attenuation of the maximum displacement with range. Freezing

saturated limestone results in lower displacements but similar attenuation curves. The maximum
values plotted in Figure 28 are listed in Table 6.

Table 7 lists the radiated kinetic energies in Indiana limestone calculated at four ranges from

the particle velocity records. The energies in the saturated and frozen/saturated limestones are
similar, being 131J and 138J, respectively. In Sierra White granite, the radiated kinetic energy is

about 170J.

4.2 SIERRA WHITE GRANITE

By comparing the particle velocities and displacements in Figures 10 and 11 with the room

temperature results from Tests 564 and 563 listed in Tabie 4, we concluded that freezing Sierra
White granite had no effect on the wave propagation characteristics. As an illustration, we see that

in Figures 29 and 30, showing the velocity and displacement attenuation plots, the frozen/saturated
granite results fall within the scatter of the room temperature results (from Reference 7). The

maximum values plotted in Figures 29 and 30 are listed in Tables 8 and 9, respectively.
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Figure 27. Attenuation of peak particle velocity in dry/frozen, saturated, and

saturated/frozen Indiana limestone.

39



Table 5

MAXIMUM PARTICLE VELOCITIES IN
INDIANA LIMESTONE (m/s)

Frozen R.T. Frozen R.T.
Range Dry Dry Saturated Saturated

(mm) 5 9 7 a 598 596 599 600 602 605 601 604

10 122 114 120 118 169 210 152 188 207

14.2 44 42 45 44 58 - 60 127 119

15 - - - - - 91 - - -

20 20 19.5 22 18 24 45 34 60 49

25 12.4 12.1 12 11 16 28 20.8 33 33

30 9.4 8.9 9 8.5 11.6 19.4 17.3 23 22

40 6.2 6.0 5.6 - 8.8 12.6 11.6 15 14

50 4.4 4.3 4.3 4 6.8 9.8 7.8 11 10

65 3.0 2.8 3 2.7 4.8 7.2 5.4 7.6 6.9

80 2.5 2.5 2.4 2.2 4.2 6.6 4.2 6.6 5.5

aTest numbers.
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Figure 28. Attenuation of peak displacement measured in dry/frozen,
saturated, and saturated/frozen Indiana limestone.
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Table 6

MAXIMUM DISPLACEMENTS IN
INDIANA LIMESTONE (jim)

Frozen R.T. Frozen R.T.
Range Dry Dry Saturated Saturated

(mm) 5 9 7 a 598 596 599 600 602 605 601 604

10 425 432 436 457 823 503 463 753 733

14.2 202 197 205 200 370 - 222 401 400

15 - - - - - 253 - - -

20 102 104 118 105 130 160 144 225 214

25 68 69 74 68 85 101 105 151 150

30 55 52 56 58 62 77 82 111 110

40 35.5 36 34 - 44 54 64 76 72

50 25.1 24.6 26 25 33 41 47 55 52

65 16 16 18 12.2 23 30 32 37 37

80 13.5 13.5 14 13 20 25 25 31 28

aTest numbers.
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Table 7

RADIATED KINETIC ENERGY IN INDIANA LIMESTONE (J)

Range Dry Saturated Saturated/Frozen

(mm) (Test 598) (Test 601) (Test 602)

25 39 148 154

30 34 131 140

40 37 123 130

50 34 120 127

Average 36 131 138
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Figure 30. Comparison of displacement attenuation in Sierra

White granite with different pore conditions.
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Table 8

MAXIMUM PARTICLE VELOCITIES IN
SIERRA WHITE GRANITE (m/s)

Frozen R.T. R.I.
Range Saturated Saturated Dry

(mM) 5 9 0 a 591 603 563 564

10 147 146 113 150 158

14.2 79 98 - -

15 - 104 104 108

20 63 64 - 76 81

25 44 50 57 62 58

30 37 55 52 55

40 30 27 - 27 28

50 20 16 - 22

65 11.6 9.8 22

80 10.8 9.6 8 -

aTest numbers.
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Table 9

MAXIMUM DISPLACEMENTS IN
SIERRA WHITE GRANITE (./im)

Frozen R.T. R.T.Range Saturated Saturated Dry
(mm) 5 9 0 a 591 603 563 564

10 264 192 144 200 171

14.2 156 120

15 93 147 132

20 108 78 - 104 96

25 75 61 57 78 75

30 65 - 47 71 70

40 46 39 - 38 37

50 34 28 32

65 26 20

80 18 14 14

aTest numbers.
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SECTION 5

CONCLUSIONS AND RECOMMENDATIONS

The experimental results showed that freezing affected the spherical waves only in the
Indiana limestone in a saturated condition. The main effects on the wave characteristics caused by

freezing of the saturated Indiana limestone are as follows:

(1) The wave speed increased from 4.7 mm/is to 5.6 mni ts.

(2) The peak particle velocity decreased by about 10%, the outward and inward
velocity phases shortened by about 30%, and a precursor wave appeared at
the short ranges.

(3) The maximum and final radial displacements were reduced by about 30%.

(4) The reduced velocity potential maintained its maximumn value, but the phase
was reduced by about 30%.

(5) The reduced displacement potential decreased by about 50%.

(6) The low frequency content of the velocity spectrum decreased by about a
factor of 2. The corner frequency increased (30 to 50 kHz) and the decay of
the high frequency content showed little change. Similar changes occurred
for the spectra of the displacements and potentials.

(7) The radiated kinetic energy remained the same.

The strong influence of freezing on the waves in saturated Indiana limestone is not

surprising because the 16% porosity of cur specimens was in the upper part of the range associated

with limestone (1% to 22%). In Sierra White granite, however, the low porosity of 0.8% is
insufficient to allow saturation at room temperature or frozen conditions to have an effect on wave

propagation near the explosive source. We recommend that similar experiments be performed in

limestone of lower porosity to determine the trend of the influence and possibly to be more

representative of the rock at Novaya Zemlya.
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APPENDIX A

OTHER EXPERIMENTAL RESULTS

In Sectiors 2 and 3, we presented and compared results for the frozen/dry and

frozen/saturated Indiana limestone Tests 598 and 602 and the frozen/saturated Sierra White granite

Test 591 (Table 3). Here, we present particle velocity results for the repeat frozen/saturated

Indiana limestone Tests 6X) and 605; a direct comparison of the velocities at the 30-mm range for

Tests 600, 602, and 605; and some displacement comparisons for Tests 602 and 605. We also

present the particle velocity results for the frozen/saturated Sierra White granite Test 603 for

comparison with the repeat Test 602.

Figures A I and A2 show the particle velocities at the nine ranges in each of Tests 6(X) and

605 for frozen/saturated Indiana limestone. The overall forms are similar to each other and to those

of Test 598 (Figure 2). The main differences are illustrated in Figure A3, which shows the particle

velocities for the three tests at a range of 30 mm. Scatter exists primarily in the magnitudes of the

outward and inward velocities. Test 600 exhibits more attenuation, which may be a result of

incomplete filling of the pores with ice. For Tests 602 and 605, we used an improved freezing

technique which included accurate weighings when the specimen was dry, saturated, and frozen

(including the weight of water forced out under freezing pressures). The technique improved the

reproducibility except for the magnitude of the rebound velocity.

Figure A4 shows the displacements obtained at all ranges in Tests 602 and 605.

Reproducibility is satisfactory except for the late-time portions of the outer ranges (r > 20 mm)

where the larger rebound in Test 605 causes smaller final displacements.

Figure A5 compares particle velocity records in the frozen/saturated Sierra White granite

Tests 591 and 603. Reproducibility is satisfactory. The records are basically the same as those of

Tests 564 and 563 for dry and saturated Sierra White granite at room temperature.

A-I



200 (a) 10-20 mm

I 150 Range (mm)E
v>. 

10

t 100 14.2

300

> 50 /

25 (b) 25-40 mm

20 Range (mm)

1525

30
8 10 40

-J/

W 5

0 , . __ ,_ _ _ _

-10

10

8 (C) 50-80 mm

6 Range (mm)

~50
65

2

-2

-4

0 10 20 30 40

TIME (ps)

CM 167653

Figure Al. Particle velocity histories measured at nine
ranges in saturated/frozen Indiana limestone,
Test 600.

A-2



200 (a) 10-20 mm

- 150

Range (mm)

10
w 15

> 50 20

30 . ..

25 (b) 25-40 mm

20
E..Range (mm)

'15 >. 25
I-": '

S10 30
"40

5

0

-5

.10

10 -

8 (C) 50-80 mm

6 Range (mm)

E2
65

4 80

-2 . -

-4

-6
0 10 20 30 40

TIME (ps)

CM-167654

Figure A2. Particle velocity histories measured at nine
ranges in saturated/frozen Indiana limestone,
Test 605.

A-3



15 : pTest 600

Test 602

10

LII

-10 . . . .. . .

0 10 20 30 40

TIME (jis)
CM- 16 7 55

Figure A3. Comparison of velocity histories at 30-mm range in three
experiments in saturated/frozen Indiana limestone.

A- 4



6 00 ---
(a) 10-20 mm Range (mm)

500 1

-400 2
Z* wU
wu 300

0

120

100 ()2-.0mm Range (mm)
E 25
~ 80 30

40
Z

~60

40 5

05

605

~30A1

uL 20

10
10

0~

-10 Ts 0

.20 0 10 ... 2 0 - -3 0 . ...40

TIME (4is)
GN -1676-56

Figure A4. Comparison of displacements at nine ranges
from two experiments in saturated/frozen
Indiana limestone.

A-5



100
(a) 14.2 mm Range

80 - Test 591
F--- Test 603E 60

40

20

50 :: (b) 25 mm Range

-- Test 591

40

40 -- Test 603

~3060

-10 ' .- '-- ..... .

10t

8 (c) 80 mm Range

sTest 591
--- Test 603

E

w

0

5 10 15 20 25

TIME ( is)
CM 167657

Figure A5. Comparison of velocity histories at different
ranges from two experiments in saturated/frozen
Sierra White granite.

A-6

10 7 -I-



APPENDIX B

DEFINITIONS AND FORMULAS

We have collected here definitions and formulas that we have employed for describing and

interpreting the results.

With and u representing the particle displacement and velocity in a spherical elastic wave,

they can be expressed in terms of the RDP, ,, and the RVP, y, by

xr o (T) =() -(r-a)/cp (BI)

where T is the time following arrival of the wave at the particle at range r and cp is the P wave

velocity.

The spectrum of discrete data f(t0 ) at times is provided by the Fourier transform f(on) in

the form

T N-1
f(Gon) =cnT= Y f(tct) e-i(Int cQ n - 0,1,2,..., N-1 (B2)

oX=0

in which Cn is the discrete Fourier transform, T is the time interval of the data measured from wave
arrival, and on is the nth angular frequency; the frequency is N = con/2it = nl'. From (B2)

I= IcnIT = (an + b2n 2 T

where

N-1 N-I
a n I fcx cos wOnta bn Y fa sin Wnt0  (B3)

01=l cL=0
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The radiated kinetic energy was calculated by means of

K(r) = 41tpcpr 2  j{u- -V/
2 )cp/r } 2 d (134)

in which p is the material density.
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